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Abstract
We analyse the slowing down of the structural relaxation dynamics of polymers
in terms of the Adam and Gibbs theory. We consider a previously derived
general relation between the configurational and the excess entropy, which
was used to derive an analytical equation for the dependence of the structural
relaxation time from the pressure and temperature. The model proved
to successfully fit the relaxation dynamics of poly(methyl methacrylate),
poly(propylene glycol) and poly(propylene glycol dimethylether), of different
molecular weights, over a wide region of temperature and pressure values above
the glass transition.

In the last few years, an intensive experimental effort has been made to study the glass transition
as induced by pressure and temperature variations [1–7]. By using the possibility of inducing
the glass transition through different thermodynamic paths, many studies principally focused
on the investigation of the role of thermal energy and density reduction in slowing down
structural dynamics [8–15]. These studies evidenced that the relative importance of these
two quantities is strongly dependent on the properties of the systems investigated (type of
interaction, molecular structure). However, in general it can be concluded that reductions of
both thermal energy and density contribute to the slowing down of the structural dynamics on
approaching the glass transition. Consequently, a general and satisfactory theory describing
the increase of the relaxation time on approaching the glass transition must take into account
both. Moreover, in the last few years some works showed that, in the dynamic region
τ < 10−8 s, glassy systems whose isochronal dielectric spectra ε(ν) for different temperatures
and pressures superpose [16] also follow a scaling relation between the isobaric relaxation
time curves [16, 17], τ (T ). Then, if the intermolecular interactions do not vary appreciably
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with the thermodynamic state, a single thermodynamic parameter, which accounts for the role
of the density and the thermal energy, rules the slowing down of the relaxation dynamics. In
this respect, theories based just on the free-volume concept seem to be inadequate, as found by
some experimental investigations [18, 19]. In contrast, the Adam and Gibbs (AG) theory [20]
takes into account both the thermal energy and the density contribution. In fact, it relates the
increase of the structural relaxation time, τ , on approaching the glass transition to the decrease
of the configurational entropy, Sc:

τ = τ0 exp

(
CAG

T Sc

)
(1)

where T is the temperature, CAG is a factor usually assumed to be independent on the
temperature and on the pressure [20, 21], and τ0 is the relaxation time value in the
limit of infinitely high temperature. Unfortunately, the configurational entropy cannot be
experimentally determined and consequently it is hard to perform a stringent test of equation (1),
except by numerical and simulation work [21–24]. However, several works recently evidenced
that near the glass transition the increase of the structural relaxation time is related to the
decrease of the excess entropy of the melt with respect to the crystal (or to the glass), Sexc,
according to the relation τ ∝ exp(B/(T Sexc)) [25–28]. Moreover, the increase of the structural
relaxation time during polymerization, and its temperature dependence in the non-equilibrium
glassy state, can be rationalized in terms of the reduction of the excess entropy [29, 30]. These
findings have usually been proposed as a verification of the AG theory. However, the debate
about the relation between Sc and Sexc as well as some approximations used to test equation (1)
remains open [31–38], and consequently the validity of the AG theory is still at the centre of
a heated debate [32–35, 37].

In a recent work we proposed a simple and quite general relation between the excess and
the configurational entropy. Using this relation we verified the AG theory both for temperature
and pressure variations in two simple glass formers, and one polymer [39]. In this work we
would like to verify the previous results for more systems, namely poly(propylene glycol) and
poly(propylene glycol dimethylether), of different molecular weights (MW). Moreover, unlike
in [39], we reconsider poly(methylmethacrylate) using a fully consistent set of thermodynamic
and dynamic measurements performed on the same sample, and in the pressure interval 0.1–
200 MPa we verify the negligible pressure dependence of the parameter CAG (equation (1)).

1. Experimental details

In this work we analysed the relaxation dynamics of poly(methyl methacrylate) (PMMA)
with MW 150 kg mol−1, poly(propylene glycol) (PPG), and poly(propylene glycol
dimethylether) (PPGM), with different molecular weights: PPG2000 (MW = 2000 g mol−1),
PPG3000 (MW = 3000 g mol−1), PPGM1000 (MW = 1000 g mol−1), and PPGM2000
(MW = 2000 g mol−1). For the PPG and PPGM compounds we considered dielectric
relaxation measurements by Suzuki [40], calorimetric measurements at atmospheric pressure
of glassy and supercooled liquid by Park [41], and expansivity measurements of glassy and
supercooled liquids from [42]. For the PMMA dielectric relaxation time, calorimetric and
expansivity data are taken from Theobald [4].

2. Adam–Gibbs theory extended to pressure variation

The possibility of analysing relaxation data for different values of pressure and temperature
gave the possibility of a stringent test of the AG theory, and made it necessary to extend the
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relation Sc(T ) = C Sexc(T ) [25, 26, 32] between the configurational and the excess entropies to
the pressure contribution [17, 27, 28, 43]. With this purpose, recently we proposed [39] a quite
general relation between the configurational and the excess entropy, that in the differential
form is written as

dSc(T, P) = ∂Sc(T, P)

∂T
dT +

∂Sc(T, P)

∂ P
dP

= gT (P)
∂Sexc(T, P)

∂T
dT + fP (T )

∂Sexc(T, P)

∂ P
dP (2)

where gT (P) and fP (T ) are adimensional positive functions of pressure and temperature
respectively, which need to be less than one (dSc < dSexc). The two functions gT (P) =
(∂Sc/∂T )/(∂Sexc/∂T )|P=const and fP (T ) = (∂Sc/∂ P)/(∂Sexc/∂ P)|T =const are expected to
be different because (∂Sexc/∂T )|P=const includes configurational, harmonic, and anharmonic
terms of the potential energy, whereas (∂Sexc/∂ P)|T =const, depending on the expansivity, has
no contribution from the harmonic term of the potential energy [39]. Moreover, since the
configurational entropy is a function of the state the condition

∂

∂ P

(
gT (P)

∂Sexc(T, P)

∂T

)
= ∂

∂T

(
fP (T )

∂Sexc(T, P)

∂ P

)
(3)

must be satisfied. When equation (3) is satisfied, the variation of the configurational entropy can
be calculated by integrating equation (2) along whichever thermodynamic path. In particular,
when Sc(T, P) is calculated along an isobaric path at atmospheric pressure, Patm, from the
initial temperature TK to the final temperature T , and then an isothermal path at T up to the
final pressure P , the configurational entropy is expressed by [39]

Sc(T, P) = gT (Patm)

∫ T

TK

�Cp

T ′ dT ′ − fP (T )

∫ P

Patm

�

(
∂V

∂T

)
P ′

dP ′ (4)

where TK is defined as the temperature where Sc(TK , P = 0.1 MPa) = 0 ((�Cp/T ) dT =
[(Cmelt

p − Ccryst
p )/T ] dT and �(∂V/∂T )p dP = −[(∂V/∂T )melt

P − (∂V/∂T )
cryst
P ] dP are the

excess heat capacity and the excess expansion coefficient of the melt with respect to the crystal).
In equation (4) the excess entropy of the melt with respect to the crystal is considered.

However, in polymers sometimes the thermodynamic properties of the crystalline state are not
available, and the excess entropy with respect to the crystal cannot be calculated. In this case,
since the temperature dependences of the volume and heat capacity of the crystal and the glass
are similar, the properties of the crystal are evaluated as those of the glass [36].

Supposing that in equation (1) only the term T Sc depends on T and P , we can explicitly
predict the temperature and pressure dependence of the structural relaxation time by calculating
the configurational entropy as a function of P and T using equation (4). We perform such
calculations on the basis of three hypotheses: (1) the temperature dependence of the excess
heat capacity is hyperbolic: �CP = K/T [25, 41]; (2) the expansion coefficient of the crystal
(glass) is pressure independent; (3) the pressure and temperature dependence of the volume of
the melt is described by the Tait equation [44–46]

V (T, P) = V (T, 0)

[
1 − 0.0894 ln

(
1 +

P

B(T )

)]
(5)

where V (T, 0) is the temperature dependence of the specific volume at zero pressure and
B(T ) = b1 exp(−b2 × T ) is a temperature dependent parameter related to the isothermal
bulk coefficient [44, 46]. For practical calculations, V (T, 0) can be approximated by
V (T, P = 0.1 MPa) [44]. According to these hypotheses we derive two equations representing
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the extension to the pressure contribution of the AG theory:

τα(T, P) = τα
0 exp

(
DT ∗

0

T − T ∗
0

)
(6)

T ∗
0 (T, P) = T0

1 + fP (T )δB(T )

gT (Patm)S∞

[−(β + γ − 1)
p

B(T )
+ γ

(
1 + p

B(T )

)
ln

(
1 + p

B(T )

) − ln
(
1 + p

B(T )

)]
(7)

where p is the value of the pressure relative to the atmospheric one (P − 0.1 MPa), T0

is the diverging temperature at atmospheric pressure, the ratio fP/gT takes into account
the ‘proportionality’ between Sc and Sexc, D = CAGgT , δ = cb2V melt(T, p = 0), β =
1/δ((∂V/∂T )melt − (∂V/∂T )cryst)p=0, γ = (Vmeltb2\(∂V/∂T )melt

p=0)
−1, and S∞ is the excess

entropy at atmospheric pressure in the limit of infinite temperature [25]. In our derivation,
S∞ is used only as a parameter related to the heat capacity integral appearing in equation (4)
(S∞ = K/T0) so our analysis is not in any way affected by the physical meaning of considering
the excess entropy of the liquid at infinite temperature.

For p = 0, T ∗
0 reduces to T0 and equation (6) reduces to the Vogel–Fulcher–Tammann

(VFT) function for the temperature dependence of the structural relaxation time [47].
Moreover, for low values of pressure (P < B(T )), the leading order terms of equations (6)
and (7) reduce to a VFT-like equation for the pressure dependence of the structural relaxation
time, as often used to fit data [48, 49]. However, for B � P higher order terms become
important and equations (6) and (7) substantially deviate from the VFT-like equation.

It is important to note that on the basis of simulation a negligible variation of CAG with
pressure was demonstrated for density changes of the order of 20% [21, 22] (typical density
variations in experiments are of the order of 5–10%). Moreover, the negligible pressure
dependence of (∂V/∂T )cryst is found for several systems up to pressures of the order of
hundreds of megapascals [4, 12, 44]. On the basis of these findings we retain the well justified
assumptions that we made in deriving equation (7).

3. Results and discussion

3.1. Thermodynamic data

PMMA expansivity measurements on the melt (0.1 MPa < P < 300 MPa and 380 K < T <

460 K) and on the glass (0.1 MPa < P < 400 MPa and 300 K < T < 430 K, from [4]) were
fitted according to the Tait equation (figure 1). The Tait equation reproduces the data for both
the melt and the glassy states with the parameters reported in table 1. Expansivity data on the
melt state for PPG2000, PPG3000, PPGM1000, and PPGM2000 are published as a function
of pressure and temperature in [42]. The Tait equation reproduces these data well in the ranges
0.1–180 MPa and 303–473 K (figure 1) with the parameters as in table 1.

Heat capacity data for the PMMA and PPG compounds were taken from [4, 41]. From
the data on the melt and the glass we estimated the excess heat capacity of the melt with
respect to the glass in the region of supercooled liquid. Then we fitted the temperature
dependence of the excess heat capacity according to the hyperbolic function �Cp = C/T .
From these data we calculated the isobaric excess entropy of these systems, which is
Sisob

exc (T ) = S∞ − C/T . The values of S∞ for these systems are 0.59 ± 0.02 J mol−1 K−1 for
PPG2000, 0.58 ± 0.02 J mol−1 K−1 for PPG3000, and 0.35 ± 0.02 J mol−1 K−1 for PMMA.
These values, calculated from the excess of the heat capacity of the liquid with respect to the
crystal, are estimates of the excess entropy of the liquid with respect to the crystal within a
few per cent.
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Figure 1. Volumetric measurements under different isothermal conditions as a function of pressure
for: (a) PMMA melt; (b) PMMA glass; (c) PPG2000; (d) PPGM2000; (e) PPGM1000; (f)
PPG3000 [4, 42]. Curves are fitting curves, for the Tait equation.

3.2. Relaxation time data

The analysis of the PMMA data on the basis of the AG theory has already been published by
us [39]. However, the previous analysis was performed using thermodynamic and dynamic
data on samples with different molecular weights. In this work we analysed thermodynamic
and dynamic data on the same sample with MW 150 kg mol−1. In [4] relaxation time data are
reported under isobaric conditions in the range 0.1–400 MPa and in the temperature interval
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Table 1. Parameters of the Tait equation.

V (T, p = 0) (cm3 g−1) B(T ) (MPa)

PMMA (melt) 0.728 + 2.01 × 10−4 × T + 3.7 × 10−7 × T 2 1520 exp(−5.3 × 10−3 × T )

PMMA (glass) 0.793 + 1.72 × 10−4 × T 414 exp(−1.6 × 10−3 × T )

PPG2000 (melt) 0.863 + 2.34 × 10−4 × T + 7.9 × 10−7 × T 2 717 exp(−5.2 × 10−3 × T )

PPG3000 (melt) 0.853 + 2.92 × 10−4 × T + 7.17 × 10−7 × T 2 703 exp(5.19 × 10−3 × T )

PPGM1000 (melt) 0.912 + 8.37 × 10−5 × T + 1.13 × 10−6 × T 2 772 exp(5.75 × 10−3 × T )

PPGM2000 (melt) 0.875 + 2.3 × 10−4 × T + 8.23 × 10−7 × T 2 716 exp(−5.3 × 10−3 × T )

Table 2. Parameters of the VFT equation for fitting atmospheric pressure data.

τ0 (ps) D T0 (K)

PMMA 10 ± 4 4 ± 1 337 ± 14
PPG2000 1.25 ± 0.25 4.69 ± 0.13 174.8 ± 0.8
PPG3000 0.46 ± 0.04 5.40 ± 0.23 171.8 ± 0.8
PPGM1000 0.19 ± 0.04 6.18 ± 0.10 159.1 ± 0.3
PPGM2000 0.54 ± 0.09 5.31 ± 0.18 164.4 ± 1

370–465 K. The analysis of the data is carried out only up to 200 MPa, since for higher pressure
values the quality of data is much poorer.

Dielectric measurements at atmospheric pressure as a function of temperature and under
three isothermal conditions as a function of pressure were performed by Suzuki on PPG and
PPGM samples for frequencies up to 1.5 MHz [40]. By the analysis he found that the shape of
the structural process is almost constant over the whole interval considered [40], and by using
this property he collapsed the spectra onto a master curve, obtaining structural relaxation time
data up to the ns range. In order to avoid the data being derived by extrapolating over a large
temperature interval, we analysed only relaxation times of the loss peak greater than 10−8 s.
Moreover, we do not consider the relaxation times measured under isothermal conditions at
320 and 319 K for PPGM1000 and PPGM2000, which are obtained by a large extrapolation
procedure [40].

As the parameter representing the relaxation time we used the characteristic time
corresponding to the frequency of the dielectric loss peak: τmax = 1/(2πνmax), which is a model
independent parameter. Moreover, since the structural process for the systems investigated
is shape invariant for the temperature and pressure intervals considered [40], the temperature
dependence of τmax is proportional to that of any other parameter representing the characteristic
relaxation time. The analysis of the data was performed as follows:

(I) we fitted the relaxation time data at atmospheric pressure using VFT, obtaining the values
of τ0, D, and T0 [12, 25, 40];

(II) we fitted the relaxation time data at higher pressures with equations (6) and (7) using the
values of D, T0, and τ0 obtained from the fit at atmospheric pressure, and the values of
the thermodynamic parameters (δ, β, γ , B(T )) calculated from thermodynamic data.

Consequently, in the case of PMMA, where expansivity and calorimetric measurements for
the melt and for the glass are available, the only free parameter in fitting the relaxation time
data at P > 0.1 MPa is the ratio gT (Patm)/ fP (T ). For PPG and PPGM, where the expansivity
data for the glass and the calorimetric measurements are not available, relaxation time data for
P > 0.1 MPa are fitted with only two free parameters: S′∞ = gT (Patm)/ fP (T )S∞ and β.
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are fitting curves, with equations (6)
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Figure 3. Relaxation time data at atmospheric pressure for (a) PPG2000, (b) PPG3000, (c)
PPGM1000, (d) PPGM2000 as a function of temperature [40]. The curves are fitting curves,
with the VFT equation.

The parameters of the fit of the atmospheric pressure data for all polymers are listed in
table 2 (figures 2 and 3).

For PMMA equations (6) and (7) fitted the temperature dependence of the structural
relaxation time at both 100 and 200 MPa (figure 2), with gT (Patm)/ fP (T ) = 1.4 ± 0.1.

For PPG and PPGM equations (6) and (7) reproduce the pressure dependence of the
structural relaxation time well under several isotherm conditions (figure 4). The values of the
parameters obtained from the analysis are reported in table 3. By using the values of S∞ and
S′∞ (S∞ is calculated from the calorimetric data on the glass and the melt) we can estimate



6604 D Prevosto et al

100 200 300 400 500 600 700

4

6

8

PPGM2000PPGM1000

PPG3000PPG2000

(d)(c)

(b)(a)
lo

g(
1/

τ τττ m
ax

)

100 200 300 400 500 600 700

4

6

8

100 200 300 400 500 600 700
2

4

6

8

lo
g(

1/
τ τττ m

ax
)

P [MPa]
200 300 400 500 600 700

4

6

8

P [MPa]

Figure 4. Experimental data on structural relaxation times (symbols) for: (a) PPG2000 and (b)
PPG3000 at 293 (circles), 303 (squares), and 313 (upward-pointing triangles) K; (c) PPGM2000
at 286 (circles), and 303 (squares), K; (c) PPGM1000 at 283 (circles), and 303 (squares) [40]. The
curves are fits with equations (6) and (7).

Table 3. Parameters from the fit of relaxation time data at P > 0.1 MPa. In the last column the
value of S∞ from calorimetric measurements is reported when available.

S′∞ S∞
β (J mol−1 K−1) (J mol−1 K−1)

T (K) 293 303 312 293 303 312

PPG2000 1.29 ± 0.01 1.30 ± 0.01 1.30 ± 0.01 0.63 ± 0.05 0.62 ± 0.04 0.61 ± 0.04 0.59 ± 0.02
PPG3000 1.28 ± 0.01 1.29 ± 0.01 1.30 ± 0.01 0.60 ± 0.03 0.60 ± 0.03 0.60 ± 0.03 0.58 ± 0.02

T (K) 283 303 283 303

PPGM1000 1.27 ± 0.01 1.28 ± 0.01 0.68 ± 0.03 0.64 ± 0.03
PPGM2000 1.33 ± 0.01 1.33 ± 0.01 0.69 ± 0.03 0.67 ± 0.03

(286 K) (286 K)

gT (Patm)/ fP (T ): 1.05 ± 0.08 and 1.04 ± 0.08 for PPG2000 and PPG3000, respectively. This
result reflects the fact that in these systems the relative weights with which the isothermal and
the isobaric configurational entropies contribute to the excess one are nearly the same. For
PPGM, since the value of S∞ cannot be estimated, the ratio gT / fP cannot be calculated. As
a test of the coherence of the fit we observe that S′∞ for PPG and PPGM are very similar, as
expected since the two systems have similar molecular structures.

As regards the value of gT / fP , two remarks are important. First, the values are different
for PMMA and PPG, reflecting these two systems having very different relaxation behaviours:
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Figure 5. The expansion coefficient
obtained from the fit of the relaxation
time data for PPG2000 (squares),
PPG3000 (circles), PPGM1000
(upward-pointing triangles), and
PPGM2000 (downward-pointing
triangles). Lines are guides for the
eyes.

in particular, PMMA shows a strong secondary relaxation process, which on the frequency
scale is very close to the structural one. This secondary process probably contributes to the
configurational entropy [50], thus varying the percentage of the configurational contribution
to the excess entropy with respect to systems with small secondary processes, such as PPG.
As a second issue, we note that since the configurational entropy defined in equation (2) must
be a function of the state, the parameters gT and fP must be related to each other. This
relation can be derived by solving equation (3) which, by using the fundamental relation of
thermodynamics, can be rewritten as

�

(
∂2V

∂T 2

) (
f p(T ) − gT (P)

) = ∂gT (P)

∂ P

�CP

T
− ∂ fP (T )

∂T
�

(
∂V

∂T

)
. (8)

According to equation (8), when gT and fP are constant and not equal, the configurational
entropy in equation (4) is a function of the state only if �(∂2V/∂T 2) = 0. It is noteworthy
that, in the temperature region where we verify the AG theory, Tg < T < 1.2Tg, �V (T )

can be described as a linear function of temperature, and �(∂2V/∂T 2) = 0 is approximately
true. For this condition gT (P) and f p(T ) can be approximated by two constants with different
values, without violating any thermodynamic principle. Nevertheless, using the expansivity
data for our systems we verified that the expected variation of f p(T ), due to the departure of
�(∂2V/∂T 2) from zero, is also smaller than the experimental error in the particular case when
(∂gT /∂ P) = 0. In fact, equation (8) can be rewritten as

�

(
∂2V

∂T 2

) /
�

(
∂V

∂T

)
= 1(− f p(T ) + gT (P)

) ∂ fP (T )

∂T
>

∂ fP (T )

∂T
(9)

where the last part is justified because gT − fP is less than unity. From equation (9) we
derive that the temperature variation of f p is of the order of �(∂2V

∂T 2 )/�(∂V
∂T ) (about 10−3 for

normal systems); moreover, since fP is of the order of unity this is also its relative temperature
variation. According to this evaluation we can easily derive that the relative variation of fP is
10−3 and in the temperature interval that we consider (about 50 K) fP is expected to vary by
about 5%. Since from the fit we obtain fP with an error of about 8%, this variation cannot be
detected in our analysis.

The parameter β yields the expansion coefficient of the crystal, (∂V/∂T )
cryst
P , at the

temperature of the dielectric isothermal measurements: the values are reported in figure 5.
The expansion coefficients have the right order of magnitude, as deduced from the comparison
with the data for the melt; moreover, as expected, they increase with the temperature.
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Figure 6. Relaxation time data
for PMMA (symbols) as a function
of (T ∗(Sisob

exc + fP/gT Sisot
exc )) in the

temperature interval 370–465 K and
pressure interval 0.1–200 MPa. The
line is a linear regression of the data.

The pressure dependence of the structural relaxation time has usually been fitted with
a VFT equation, which reproduces the experimental data well [48, 49]. Also for PPG the
pressure dependence of the structural relaxation time has been fitted with a VFT equation by
several authors [2, 40]. Anyway, the unphysical values of the parameters obtained from the
analysis were recognized, as well as the fact that three parameters of the VFT assume different
values when the different isothermal measurements are considered [40, 48, 49]. According to
equations (6) and (7) the pressure dependence of the structural relaxation time up to 600 MPa
is no longer described by a VFT function. However, in spite of the complexity of equations (6)
and (7), our analysis is performed with many fixed parameters, and only a few that change in
accordance with the typical behaviour of the expansivity data. The close connection of the
parameters in equations (6) and (7) with the thermodynamic properties of the system allows a
check on the reliability of the fit, and in our opinion supports the use of our equation against the
use of the VFT equation. Moreover, in order to verify the deviation of the pressure dependence
of the structural relaxation time from the VFT function it is possible to investigate the deviation
of the Stickel variable, �1/τ = {[d log(1/τmax)]/d(P)}−1/2 [48–54], from the linear pressure
dependence. We performed this analysis on PPG and PGM data but no reliable conclusion can
be drawn because of the scatter of the data.

An equivalent, but more direct, test of the AG model can be performed on PMMA data.
With the functional forms estimated for the temperature dependence of the heat capacity and
the temperature and pressure dependence of the expansivity of the melt and the glassy state, we
calculated Sisob

exc and Sisot
exc in the same temperature and pressure intervals as the relaxation time

data. Then, considering that Sc = gT (Sisob
exc + fP/gT Sisot

exc ) (equation (4)), we plotted log(1/τmax)

data as a function of T ∗(Sisob
exc + fP/gT Sisot

exc ) and verified the possibility of obtaining a linear
representation of data with appropriate values of fP/gT . We found that in accordance with
the previous analysis a single value of the coefficient gT / fP = 1.4 ± 0.1 is sufficient for
reducing all the data obtained for different pressure values onto a single master curve within
experimental error (figure 6). The fitting of all the data with a first-order polynomial provides
the intercepts with the y-axis, log(1/τ0) = 11.1 ± 0.3, and the slope of the straight line,
CAG/gT = −197±6 J kmol−1, with a correlation coefficient r = 0.99 and a standard deviation
SD = 0.24. This analysis confirms that the three data sets can be described by the same curve.
Moreover, since the slope (CAG/gT ) is constant with varying pressure, we can conclude from a
direct analysis that the pressure dependence of CAG/gT in PMMA is negligible up to 200 MPa.
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It is important that according to our analysis the parameter (T Sc) alone is sufficient for
describing the increase of the structural relaxation time on approaching the glass transition in
several systems. Moreover, as reported from previous analysis [40],at least for PPG and PPGM
it was observed that the shape of the structural peak is independent of pressure and temperature
in the region near the glass transition (for PMMA we have not found any reference). This result
was also found for o-terphenyl and triphenylchloromethane which were previously considered
by us for verifying equations (6) and (7). Then, in these systems, the product (T Sc) is the only
parameter necessary for reproducing the evolution of the structural process on approaching the
glass transition.

4. Conclusions

We analysed the combined pressure–temperature dependence of structural relaxation time
polymers by a suitable extension of the AG theory. It is worth noting that even if the
experimental data on dynamic and thermodynamic properties of these systems have been
yet published, their analysis on the basis of the AG model is the original contribution of this
work. The equations used for the analysis of relaxation time data are derived with few and
reasonable assumptions:

• the parameter CAG in equation (1) is temperature and pressure independent in the region
near the glass transition;

• the excess and the configurational entropy are related through equation (2);
• the temperature dependence of the excess heat capacity is described by the hyperbolic

equation;
• the pressure dependence of the expansion coefficient of the crystal (glass) is negligible.

It is worth noting that the first and the third assumptions were directly verified: for PMMA
the parameter CAG is constant for pressure up to 200 MPa, and the temperature dependence
of the excess heat capacity was fitted to the hyperbolic approximation for PMMA and PPG
systems.

Equations (6) and (7) describe satisfactorily the variation of the structural relaxation times
on approaching the glass transition. All the parameters in the equations are related to calori-
metric and expansivity properties of the system. The analysis of the data at high pressure is
performed with one free parameter for PMMA and two free parameters for PPG and PPGM. The
best-fit parameters have reasonable values,and this finding confirms the validity of our analysis.

In conclusion, comparing also with previous results on many systems [17, 27, 28, 39] we
think that in those systems where the shape of the structural process remains almost constant
on approaching the glass transition, the evolution of the structural process can be reproduced
by the use of one thermodynamic quantity. In particular, the product T Sc appears to be suitable
for describing this evolution since equations (6) and (7) give a good description of the variation
of structural relaxation times on approaching the glass transition.
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